Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

YMgGa

Martin Sahlberg,* Torbjörn Gustafsson and Yvonne Andersson

Department of Materials Chemistry, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden

Correspondence e-mail: martin.sahlberg@mkem.uu.se

Received 16 October 2007; accepted 29 October 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (Mg–Mg) = 0.007 Å; R factor = 0.035; wR factor = 0.088; data-to-parameter ratio = 25.6.

The crystal structure of YMgGa, yttrium magnesium gallide, is isotypic with LaMgGa and crystallizes in the hexagonal ZrNiAl type structure. It consists of a three-dimensional network of Mg and Ga atoms, in which Y atoms fill channels. There are two crystallographically independent Ga sites. One Ga atom (Ga1) has three Mg atoms as near neighbours and six Y atoms at a slightly longer distance, giving rise to a [3 + 6]coordination. Another Ga atom (Ga2) is also nine-coordinate but has six near Mg neighbours and three Y at a somewhat longer distance in a [6 + 3] coordination. The Mg atom is tetrahedrally coordinated by four Ga atoms and has two additional Mg neighbours at a slightly longer distance. The site symmetries for Y, Ga1, Ga2 and Mg are m2m, $\overline{6}$, $\overline{6}2m$ and m2m, respectively. The crystal used was an inversion twin.

Related literature

For structure refinement of LaMgGa and for the unit-cell parameters of YMgGa, see: Kraft *et al.* (2003). The crystal structure of YMgGa is related to the Fe₂P type structure (Rundqvist & Jellinek, 1959). For structural investigations of Mg and binaries in the Y–Mg–Ga system, see: Smith *et al.* (1969); Owen *et al.* (1935); Smith *et al.* (1965); Schob & Parthé, (1965). For Mg alloys and hydrogen-absorbing properties of Mg compounds, see: Sakintuna *et al.* (2007); Zlotea *et al.* (2006); Sahlberg & Andersson (2007).

Experimental

Crystal data YMgGa $M_r = 182.94$ Hexagonal, $P\overline{6}2m$

a = 7.2689 (10) Åc = 4.4205 (9) Å $V = 202.27 (6) \text{ Å}^3$ Z = 3Ag $K\alpha$ radiation $\mu = 16.83 \text{ mm}^{-1}$

Data collection

Bruker APEX diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
$T_{\rm min} = 0.276, T_{\rm max} = 0.431$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	$\Delta \rho_{\rm max} = 1.65 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.088$	$\Delta \rho_{\rm min} = -1.78 \text{ e} \text{ \AA}^{-3}$
S = 1.15	Absolute structure: Flack (1983),
333 reflections	136 Friedel pairs
13 parameters	Flack parameter: 0.43 (5)

 Table 1

 Selected bond lengths (Å).

Ga1-Mg1	2.803 (3)	Ga2-Y1 ⁱⁱ	3.1033 (12)
Ga1-Y1 ⁱ	3.0936 (4)	Mg1-Mg1 ⁱⁱⁱ	3.076 (7)
Ga2-Mg1	2.835 (3)	$Mg1 - Y1^{i}$	3.255 (3)

Symmetry codes: (i) x, y, z + 1; (ii) -x + y, -x + 2, z; (iii) -x + y - 1, -x + 1, z.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2001); program(s) used to refine structure: *SHELXTL*; molecular graphics: *DIAMOND* (Crystal Impact, 2006); software used to prepare material for publication: *SHELXTL* and *publCIF* (Westrip, 2007).

The authors thank the Swedish Reseach Council for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2155).

References

- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Crystal Impact (2006). *DIAMOND*. Version 3.1b. Crystal Impact GbR, Bonn, Germany.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kraft, R., Valldor, M. & Pöttgen, R. (2003). Z. Naturforsch Teil B, 58, 827-831.
- Owen, E. A., Pickup, L. & Roberts, J. O. (1935). J. Chem. Phys. 3, 605-616.
- Rundqvist, S. & Jellinek, F. (1959). Acta Chem. Scand. 13, 425–432.
- Sahlberg, M. & Andersson, Y. (2007). J. Alloys Compd. 446-447, 134-137.
- Sakintuna, B., Lamari-Darkrim, F. & Hirscher, M. (2007). Int. J. Hydrogen Energy, **32**, 1121–1140.
- Schob, O. & Parthé, E. (1965). Acta Cryst. 19, 214-224.
- Sheldrick, G. M. (2001). *SHELXTL* (Version 5.0) and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Smith, J. F., Bailey, D. M., Novotny, D. B. & Davison, J. E. (1965). Acta Metall. 13, 889–895.
- Smith, G. S., Johnson, Q. & Wood, D. N. (1969). Acta Cryst. B25, 554-557.
- Westrip, S. P. (2007). publCIF. In preparation.
- Zlotea, C., Lu, J. & Andersson, Y. (2006). J. Alloys Compd. 426, 357-362.

4365 measured reflections 333 independent reflections

324 reflections with $I > 2\sigma(I)$

T = 293 (2) K $0.09 \times 0.07 \times 0.05 \text{ mm}$

 $R_{\rm int} = 0.087$

supplementary materials

Acta Cryst. (2007). E63, i195 [doi:10.1107/S160053680705413X]

YMgGa

M. Sahlberg, T. Gustafsson and Y. Andersson

Comment

The potential use of magnesium alloys as storage materials for hydrogen has led to a large number of investigations on different magnesium alloys (Sakintuna *et al.*, 2007). The studies of compounds in the systems Mg—Y, Mg—Ga and Mg—Y—Zn have shown some very interesting hydrogen absorbing properties, such as hydrogen induced nanowhisker formation and improved hydrogen absorption/desorption properties, as compared to pure Mg (Zlotea *et al.*, 2006; Sahlberg & Andersson, 2007). Recently we have grown single crystals of YMgGa, and determined its crystal structure. The existence of this phase and the unit-cell parameters were previously reported (Kraft *et al.*, 2003), but no crystal structure refinement has been published.

In the title compound Mg and Ga atoms form a network with distorted channels which are occupied by Y atoms. YMgGa crystallizes in the hexagonal ZrNiAl type structure which is related to the Fe₂P type structure (Rundqvist & Jellinek, 1959). The two Fe sites are then occupied with Mg and Y atoms, and the two distinct Ga atoms are located at the corresponding P positions. The Mg—Ga distances, 2.803 (3) and 2.835 (3) Å, respectively, are in agreement with the binary Mg—Ga compounds (Smith *et al.*, 1969). However, the Mg—Mg distance is 3.076 (7) Å, which is significantly shorter than in metallic magnesium, 3.20 Å (Owen *et al.*, 1935). The strong Mg—Ga and Mg—Mg interactions lead to a three-dimensional network which is shown in Figure 1. The Y—Mg (3.255 (3) Å) and Y—Ga (3.0936 (4) Å and 3.1033 (12) Å) distances are likewise in agreement with the binary compounds (Smith *et al.*, 1965; Schob & Parthé, 1965).

The coordination around Ga can be described as a slightly distorted capped trigonal prism. Ga1 is surrounded by 3 Mg atoms at 2.803 (3) Å and by 6 Y atoms at 3.0936 (4) Å in a [3 + 6] coordination. The Mg atoms form a triangle and the Y atoms are situated in the corners of a trigonal prism. Ga2 has a [6 + 3] coordination by 6 Mg at 2.835 (3) Å forming a trigonal prism that is capped by 3 Y at 3.1033 (12) Å. The Mg atom is tetrahedrally coordinated by 4 Ga atoms at 2.803 (3) and 2.835 (3) Å, and has 2 additional Mg neighbours at 3.076 (7) Å. The Y atom has 5 Ga neighbours in a pyramidal coordination and 6 additional Mg atoms forming a trigonal prism. The different coordination polyhedra around each atom are displayed in Figure 2.

Experimental

YMgGa single crystals were obtained by heating appropriate amounts of the elements (Mg 99.95%, Y 99.9%, Ga 99.998%) inside an argon filled sealed tantalum tube in a high-frequency induction furnace at 1373 K. The sample was then heat-treated at 573 K for seven d to improve crystal growth. Large single crystals were removed from the surface of the sample and cut into smaller pieces. Bulk samples were characterized by X-ray powder diffraction.

Refinement

The highest peak in the final Fourier map is located is 1.05 Å, and the deepest hole 1.51 Å from Y1. The measured crystal was an inversion twin with an approximate twin ratio of 1:1 (Flack parameter 0.43 (5).

Figures

Fig. 1. The packing of the crystal structure of YMgGa, viewed down the *c* axis. The dotted lines show the Mg—Ga network and the channels filled by Y atoms. The Mg, Ga and Y atoms are gray, black and red, respectively.

Fig. 2. The coordination polyhedra of YMgGa, displayed with ellipsoids at the 90% probability level. a) represents the coordination around Ga1, b) around Ga2, c) around Mg and d) around Y.

Yttrium magnesium gallide

Crystal data	
YMgGa	Z = 3
$M_r = 182.94$	$F_{000} = 246$
Hexagonal, P62m	$D_{\rm x} = 4.505 {\rm ~Mg~m^{-3}}$
Hall symbol: P -6 -2	Ag $K\alpha$ radiation $\lambda = 0.56085$ Å
a = 7.2689 (10) Å	Cell parameters from 801 reflections
b = 7.2689 (10) Å	$\theta = 3.6 - 22.4^{\circ}$
c = 4.4205 (9) Å	$\mu = 16.83 \text{ mm}^{-1}$
$\alpha = 90^{\circ}$	T = 293 (2) K
$\beta = 90^{\circ}$	Block, grey
$\gamma = 120^{\circ}$	$0.09\times0.07\times0.05~mm$
$V = 202.27 (6) \text{ Å}^3$	

Data collection

Bruker Apex l diffractometer	333 independent reflections
Radiation source: fine-focus sealed tube	324 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.087$
T = 293(2) K	$\theta_{\text{max}} = 26.3^{\circ}$
ω–scans	$\theta_{\min} = 2.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)	$h = -11 \rightarrow 11$
$T_{\min} = 0.276, \ T_{\max} = 0.431$	$k = -11 \rightarrow 11$
4365 measured reflections	$l = -6 \rightarrow 6$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0466P)^2 + 0.5229P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.035$	$(\Delta/\sigma)_{\rm max} = 0.001$
$wR(F^2) = 0.088$	$\Delta \rho_{max} = 1.65 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 1.15	$\Delta \rho_{min} = -1.78 \text{ e } \text{\AA}^{-3}$
333 reflections	Extinction correction: none
13 parameters	Absolute structure: Flack (1983), 136 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.43 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Z		$U_{\rm iso}$ */ $U_{\rm eq}$	
Y1	0.57308 (15)	1.0000	0.5000)	0.0116 (2)	
Gal	0.3333	0.6667	1.0000)	0.0104 (3)	
Ga2	0.0000	1.0000	0.5000)	0.0125 (4)	
Mg1	0.2443 (5)	1.0000	1.0000)	0.0109 (7)	
Atomic displa	acement parameters	(\AA^2)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Y1	0.0118 (3)	0.0103 (4)	0.0121 (4)	0.0052 (2)	0.000	0.000
Gal	0.0101 (4)	0.0101 (4)	0.0112 (6)	0.0050 (2)	0.000	0.000
Ga2	0.0138 (6)	0.0138 (6)	0.0100 (9)	0.0069 (3)	0.000	0.000
Mg1	0.0088 (14)	0.0102 (19)	0.0141 (17)	0.0051 (9)	0.000	0.000
Geometric po	arameters (Å, °)					
Y1—Ga1 ⁱ		3.0936 (4)	Ga1—	-Y1 ^{xii}		3.0936 (4)
Y1—Ga1 ⁱⁱ		3.0936 (4)	Ga2—	-Mg1 ^{xiii}		2.835 (3)
Y1—Ga1 ⁱⁱⁱ		3.0936 (4)	Ga2—	-Mg1		2.835 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

Y1—Ga1	3.0936 (4)	Ga2—Mg1 ^{xiv}	2.835 (3)
Y1—Ga2 ^{iv}	3.1033 (12)	Ga2—Mg1 ^{xv}	2.835 (3)
Y1—Mg1 ⁱⁱ	3.255 (3)	Ga2—Mg1 ⁱⁱ	2.835 (3)
Y1—Mg1	3.255 (3)	Ga2—Mg1 ^{xvi}	2.835 (3)
Y1—Mg1 ^v	3.4869 (8)	Ga2—Y1 ^{xvii}	3.1033 (12)
Y1—Mg1 ^{vi}	3.4868 (8)	Ga2—Y1 ^{ix}	3.1033 (12)
Y1—Mg1 ^{vii}	3.4868 (8)	Ga2—Y1 ^{xviii}	3.1033 (12)
Y1—Mg1 ^{viii}	3.4868 (8)	Mg1—Ga1 ⁱ	2.803 (3)
$Y1 - Y1^{v}$	3.7491 (7)	Mg1—Ga2 ^x	2.835 (2)
Ga1—Mg1	2.803 (3)	Mg1—Mg1 ^{xvi}	3.076 (7)
Ga1—Mg1 ^{ix}	2.803 (3)	Mg1—Mg1 ^{xiv}	3.076 (7)
Ga1—Mg1 ^{vii}	2.803 (3)	Mg1—Y1 ^x	3.255 (3)
Gal—Y1 ^x	3.0936 (4)	Mg1—Y1 ^{ix}	3.4869 (8)
Ga1—Y1 ^{ix}	3.0936 (4)	Mg1—Y1 ^{xix}	3.4869 (8)
Ga1—Y1 ^{xi}	3.0936 (4)	Mg1—Y1 ^{xi}	3.4868 (8)
Ga1—Y1 ^{vii}	3.0936 (4)	Mg1—Y1 ^{xvii}	3.4868 (8)
Gal ⁱ —Y1—Gal ⁱⁱ	160.23 (4)	Mg1 ^{xiii} —Ga2—Mg1	143.50 (5)
Gal ⁱ —Y1—Gal ⁱⁱⁱ	91.197 (16)	Mg1 ^{xiii} —Ga2—Mg1 ^{xiv}	143.50 (5)
Ga1 ⁱⁱ —Y1—Ga1 ⁱⁱⁱ	85.420 (15)	Mg1—Ga2—Mg1 ^{xiv}	65.69 (10)
Ga1 ⁱ —Y1—Ga1	85.420 (15)	Mg1 ^{xiii} —Ga2—Mg1 ^{xv}	65.69 (10)
Ga1 ⁱⁱ —Y1—Ga1	91.197 (16)	Mg1—Ga2—Mg1 ^{xv}	143.50 (5)
Ga1 ⁱⁱⁱ —Y1—Ga1	160.23 (4)	Mg1 ^{xiv} —Ga2—Mg1 ^{xv}	102.44 (13)
Ga1 ⁱ —Y1—Ga2 ^{iv}	99.89 (2)	Mg1 ^{xiii} —Ga2—Mg1 ⁱⁱ	65.69 (10)
Ga1 ⁱⁱ —Y1—Ga2 ^{iv}	99.89 (2)	Mg1—Ga2—Mg1 ⁱⁱ	102.44 (13)
Ga1 ⁱⁱⁱ —Y1—Ga2 ^{iv}	99.89 (2)	Mg1 ^{xiv} —Ga2—Mg1 ⁱⁱ	143.50 (5)
Ga1—Y1—Ga2 ^{iv}	99.89 (2)	Mg1 ^{xv} —Ga2—Mg1 ⁱⁱ	65.69 (10)
Ga1 ⁱ —Y1—Mg1 ⁱⁱ	111.04 (4)	Mg1 ^{xiii} —Ga2—Mg1 ^{xvi}	102.44 (13)
Ga1 ⁱⁱ —Y1—Mg1 ⁱⁱ	52.33 (3)	Mg1—Ga2—Mg1 ^{xvi}	65.69 (10)
Ga1 ⁱⁱⁱ —Y1—Mg1 ⁱⁱ	52.33 (3)	Mg1 ^{xiv} —Ga2—Mg1 ^{xvi}	65.69 (10)
Ga1—Y1—Mg1 ⁱⁱ	111.04 (4)	Mg1 ^{xv} —Ga2—Mg1 ^{xvi}	143.50 (5)
Ga2 ^{iv} —Y1—Mg1 ⁱⁱ	137.24 (5)	Mg1 ⁱⁱ —Ga2—Mg1 ^{xvi}	143.50 (5)
Ga1 ⁱ —Y1—Mg1	52.33 (3)	Mg1 ^{xiii} —Ga2—Y1 ^{xvii}	128.78 (6)
Ga1 ⁱⁱ —Y1—Mg1	111.04 (4)	Mg1—Ga2—Y1 ^{xvii}	71.75 (3)
Ga1 ⁱⁱⁱ —Y1—Mg1	111.04 (4)	Mg1 ^{xiv} —Ga2—Y1 ^{xvii}	71.75 (3)
Ga1—Y1—Mg1	52.33 (3)	Mg1 ^{xv} —Ga2—Y1 ^{xvii}	71.75 (3)
Ga2 ^{iv} —Y1—Mg1	137.24 (5)	Mg1 ⁱⁱ —Ga2—Y1 ^{xvii}	71.75 (3)
Mg1 ⁱⁱ —Y1—Mg1	85.53 (10)	Mg1 ^{xvi} —Ga2—Y1 ^{xvii}	128.78 (6)
Ga1 ⁱ —Y1—Mg1 ^v	49.99 (5)	Mg1 ^{xiii} —Ga2—Y1 ^{ix}	71.75 (3)
Ga1 ⁱⁱ —Y1—Mg1 ^v	149.44 (7)	Mg1—Ga2—Y1 ^{ix}	71.75 (3)
Ga1 ⁱⁱⁱ —Y1—Mg1 ^v	105.24 (5)	Mg1 ^{xiv} —Ga2—Y1 ^{ix}	128.78 (6)

Gal—Yl—Mgl ^v	87.44 (4)	Mg1 ^{xv} —Ga2—Y1 ^{ix}	128.78 (6)
Ga2 ^{iv} —Y1—Mg1 ^v	50.55 (5)	Mg1 ⁱⁱ —Ga2—Y1 ^{ix}	71.75 (3)
Mg1 ⁱⁱ —Y1—Mg1 ^v	153.75 (6)	Mg1 ^{xvi} —Ga2—Y1 ^{ix}	71.75 (3)
Mg1—Y1—Mg1 ^v	92.07 (7)	Y1 ^{xvii} —Ga2—Y1 ^{ix}	120.0
Ga1 ⁱ —Y1—Mg1 ^{vi}	149.44 (7)	Mg1 ^{xiii} —Ga2—Y1 ^{xviii}	71.75 (3)
Ga1 ⁱⁱ —Y1—Mg1 ^{vi}	49.99 (5)	Mg1—Ga2—Y1 ^{xviii}	128.78 (6)
Ga1 ⁱⁱⁱ —Y1—Mg1 ^{vi}	87.44 (4)	Mg1 ^{xiv} —Ga2—Y1 ^{xviii}	71.75 (3)
Ga1—Y1—Mg1 ^{vi}	105.24 (5)	Mg1 ^{xv} —Ga2—Y1 ^{xviii}	71.75 (3)
Ga2 ^{iv} —Y1—Mg1 ^{vi}	50.55 (5)	Mg1 ⁱⁱ —Ga2—Y1 ^{xviii}	128.78 (6)
Mg1 ⁱⁱ —Y1—Mg1 ^{vi}	92.07 (7)	Mg1 ^{xvi} —Ga2—Y1 ^{xviii}	71.75 (3)
Mg1—Y1—Mg1 ^{vi}	153.75 (6)	Y1 ^{xvii} —Ga2—Y1 ^{xviii}	120.0
Mg1 ^v —Y1—Mg1 ^{vi}	101.11 (10)	Y1 ^{ix} —Ga2—Y1 ^{xviii}	120.0
Ga1 ⁱ —Y1—Mg1 ^{vii}	87.44 (4)	Ga1—Mg1—Ga1 ⁱ	96.93 (12)
Ga1 ⁱⁱ —Y1—Mg1 ^{vii}	105.24 (5)	Ga1—Mg1—Ga2	114.538 (6)
Ga1 ⁱⁱⁱ —Y1—Mg1 ^{vii}	149.44 (7)	Gal ⁱ —Mgl—Ga2	114.538 (6)
Ga1—Y1—Mg1 ^{vii}	49.99 (5)	Ga1—Mg1—Ga2 ^x	114.538 (6)
Ga2 ^{iv} —Y1—Mg1 ^{vii}	50.55 (5)	Ga1 ⁱ —Mg1—Ga2 ^x	114.538 (6)
Mg1 ⁱⁱ —Y1—Mg1 ^{vii}	153.75 (6)	Ga2—Mg1—Ga2 ^x	102.44 (12)
Mg1—Y1—Mg1 ^{vii}	92.07 (7)	Ga1—Mg1—Mg1 ^{xvi}	101.54 (6)
Mg1 ^v —Y1—Mg1 ^{vii}	52.34 (12)	Ga1 ⁱ —Mg1—Mg1 ^{xvi}	161.54 (6)
Mg1 ^{vi} —Y1—Mg1 ^{vii}	78.67 (2)	Ga2—Mg1—Mg1 ^{xvi}	57.15 (5)
Ga1 ⁱ —Y1—Mg1 ^{viii}	105.24 (5)	Ga2 ^x —Mg1—Mg1 ^{xvi}	57.15 (5)
Ga1 ⁱⁱ —Y1—Mg1 ^{viii}	87.44 (4)	Ga1—Mg1—Mg1 ^{xiv}	161.54 (6)
Ga1 ⁱⁱⁱ —Y1—Mg1 ^{viii}	49.99 (5)	Gal ⁱ —Mgl—Mgl ^{xiv}	101.54 (6)
Ga1—Y1—Mg1 ^{viii}	149.44 (7)	Ga2—Mg1—Mg1 ^{xiv}	57.15 (5)
Ga2 ^{iv} —Y1—Mg1 ^{viii}	50.55 (5)	Ga2 ^x —Mg1—Mg1 ^{xiv}	57.15 (5)
Mg1 ⁱⁱ —Y1—Mg1 ^{viii}	92.07 (7)	Mg1 ^{xvi} —Mg1—Mg1 ^{xiv}	60.0
Mg1—Y1—Mg1 ^{viii}	153.75 (6)	Ga1—Mg1—Y1 ^x	60.87 (6)
Mg1 ^v —Y1—Mg1 ^{viii}	78.67 (2)	Ga1 ⁱ —Mg1—Y1 ^x	60.87 (6)
Mg1 ^{vi} —Y1—Mg1 ^{viii}	52.34 (12)	Ga2—Mg1—Y1 ^x	171.54 (11)
Mg1 ^{vii} —Y1—Mg1 ^{viii}	101.11 (10)	Ga2 ^x —Mg1—Y1 ^x	86.01 (3)
Ga1 ⁱ —Y1—Y1 ^v	52.703 (6)	Mg1 ^{xvi} —Mg1—Y1 ^x	129.48 (4)
Ga1 ⁱⁱ —Y1—Y1 ^v	134.380 (9)	Mg1 ^{xiv} —Mg1—Y1 ^x	129.48 (4)
Ga1 ⁱⁱⁱ —Y1—Y1 ^v	52.703 (6)	Ga1—Mg1—Y1	60.87 (6)
Ga1—Y1—Y1 ^v	134.380 (9)	Ga1 ⁱ —Mg1—Y1	60.87 (6)
$Ga2^{iv}$ —Y1—Y1 ^v	74.21 (3)	Ga2—Mg1—Y1	86.01 (3)
Mg1 ⁱⁱ —Y1—Y1 ^v	101.53 (2)	Ga2 ^x —Mg1—Y1	171.54 (11)
$Mg1-Y1-Y1^{v}$	101.53 (2)	Mg1 ^{xvi} —Mg1—Y1	129.48 (4)
$Mg1^{v}$ — $Y1$ — $Y1^{v}$	53.32 (5)	Mg1 ^{xiv} —Mg1—Y1	129.48 (4)
$Mg1^{vi}$ — $Y1$ — $Y1^{v}$	104.56 (7)	Y1 ^x —Mg1—Y1	85.53 (10)
Mg1 ^{vii} —Y1—Y1 ^v	104.56 (7)	Ga1—Mg1—Y1 ^{ix}	57.70 (2)

Symmetry codes: (i) y, x+1, -z+2; (ii) x, y, z-1; (iii) y, x+1, -z+1; (iv) x+1, y, z; (v) -y+2, x-y+2, z; (vi) -x+y, -x+1, z-1; (vii) -x+y, -x+1, z-1; (vii) -x+y, -x+1, z-1; (viii) -x+y, -x+1, z-1; (viii) -x+y, -x+1, z+1; (viii) -x+y, -x+1, z+1; (viii) -x+y-1, -x+1, z-1; (viii) -y+1, x-y+2, z; (v) -y+1, x-y+2, z-1; (vi) -x+y-1, -x+1, z; (viii) -x+y, -x+2, z; (viii) x-1, y, z; (viii) -x+y, -x+2, z+1.

Mg1 ^{viii} —Y1—Y1 ^v	53.32 (5)	Gal ⁱ —Mg1—Y1 ^{ix}	128.28 (9)
Mg1—Ga1—Mg1 ^{ix}	120.0	Ga2—Mg1—Y1 ^{ix}	57.70 (3)
Mg1—Ga1—Mg1 ^{vii}	120.000 (1)	Ga2 ^x —Mg1—Y1 ^{ix}	117.00 (8)
Mg1 ^{ix} —Ga1—Mg1 ^{vii}	120.0	Mg1 ^{xvi} —Mg1—Y1 ^{ix}	63.83 (6)
Mg1—Ga1—Y1 ^x	66.80 (4)	Mg1 ^{xiv} —Mg1—Y1 ^{ix}	109.25 (6)
Mg1 ^{ix} —Ga1—Y1 ^x	134.247 (10)	Y1 ^x —Mg1—Y1 ^{ix}	118.53 (8)
Mg1 ^{vii} —Ga1—Y1 ^x	72.31 (4)	Y1—Mg1—Y1 ^{ix}	67.47 (3)
Mg1—Ga1—Y1 ^{ix}	72.31 (4)	Ga1—Mg1—Y1 ^{xix}	128.28 (9)
Mg1 ^{ix} —Ga1—Y1 ^{ix}	66.80 (4)	Ga1 ⁱ —Mg1—Y1 ^{xix}	57.70 (2)
Mg1 ^{vii} —Ga1—Y1 ^{ix}	134.247 (10)	Ga2—Mg1—Y1 ^{xix}	117.00 (8)
Y1 ^x —Ga1—Y1 ^{ix}	139.045 (6)	Ga2 ^x —Mg1—Y1 ^{xix}	57.70 (3)
Mg1—Ga1—Y1 ^{xi}	72.31 (4)	Mg1 ^{xvi} —Mg1—Y1 ^{xix}	109.25 (6)
Mg1 ^{ix} —Ga1—Y1 ^{xi}	66.80 (4)	Mg1 ^{xiv} —Mg1—Y1 ^{xix}	63.83 (6)
Mg1 ^{vii} —Ga1—Y1 ^{xi}	134.247 (10)	Y1 ^x —Mg1—Y1 ^{xix}	67.47 (3)
Y1 ^x —Ga1—Y1 ^{xi}	74.593 (12)	Y1—Mg1—Y1 ^{xix}	118.53 (8)
Y1 ^{ix} —Ga1—Y1 ^{xi}	91.197 (16)	Y1 ^{ix} —Mg1—Y1 ^{xix}	172.63 (13)
Mg1—Ga1—Y1	66.80 (4)	Ga1—Mg1—Y1 ^{xi}	57.70 (2)
Mg1 ^{ix} —Ga1—Y1	134.247 (10)	Ga1 ⁱ —Mg1—Y1 ^{xi}	128.28 (9)
Mg1 ^{vii} —Ga1—Y1	72.31 (4)	Ga2—Mg1—Y1 ^{xi}	117.00 (8)
Y1 ^x —Ga1—Y1	91.197 (16)	Ga2 ^x —Mg1—Y1 ^{xi}	57.70 (3)
Y1 ^{ix} —Ga1—Y1	74.593 (12)	Mg1 ^{xvi} —Mg1—Y1 ^{xi}	63.83 (6)
Y1 ^{xi} —Ga1—Y1	139.045 (6)	Mg1 ^{xiv} —Mg1—Y1 ^{xi}	109.25 (6)
Mg1—Ga1—Y1 ^{vii}	134.247 (10)	Y1 ^x —Mg1—Y1 ^{xi}	67.47 (3)
Mg1 ^{ix} —Ga1—Y1 ^{vii}	72.31 (4)	Y1—Mg1—Y1 ^{xi}	118.53 (8)
Mg1 ^{vii} —Ga1—Y1 ^{vii}	66.80 (4)	Y1 ^{ix} —Mg1—Y1 ^{xi}	78.67 (2)
Y1 ^x —Ga1—Y1 ^{vii}	139.045 (6)	Y1 ^{xix} —Mg1—Y1 ^{xi}	100.84 (3)
Y1 ^{ix} —Ga1—Y1 ^{vii}	74.593 (12)	Ga1—Mg1—Y1 ^{xvii}	128.28 (9)
Y1 ^{xi} —Ga1—Y1 ^{vii}	139.045 (6)	Ga1 ⁱ —Mg1—Y1 ^{xvii}	57.70 (2)
Y1—Ga1—Y1 ^{vii}	74.593 (12)	Ga2—Mg1—Y1 ^{xvii}	57.70 (3)
Mg1—Ga1—Y1 ^{xii}	134.247 (10)	Ga2 ^x —Mg1—Y1 ^{xvii}	117.00 (8)
Mg1 ^{ix} —Ga1—Y1 ^{xii}	72.31 (4)	Mg1 ^{xvi} —Mg1—Y1 ^{xvii}	109.25 (6)
Mg1 ^{vii} —Ga1—Y1 ^{xii}	66.80 (4)	Mg1 ^{xiv} —Mg1—Y1 ^{xvii}	63.83 (6)
Y1 ^x —Ga1—Y1 ^{xii}	74.593 (12)	Y1 ^x —Mg1—Y1 ^{xvii}	118.53 (8)
Y1 ^{ix} —Ga1—Y1 ^{xii}	139.045 (6)	Y1—Mg1—Y1 ^{xvii}	67.47 (3)
Y1 ^{xi} —Ga1—Y1 ^{xii}	74.593 (12)	Y1 ^{ix} —Mg1—Y1 ^{xvii}	100.84 (3)
Y1—Ga1—Y1 ^{xii}	139.045 (6)	Y1 ^{xix} —Mg1—Y1 ^{xvii}	78.67 (2)
Y1 ^{vii} —Ga1—Y1 ^{xii}	91.197 (16)	Y1 ^{xi} —Mg1—Y1 ^{xvii}	172.63 (13)

Fig. 2

